油庫油氣回收設備用防爆鼓風機-- 防爆環(huán)形鼓風機引進了德國技術,攻克了風機在啟動時電流過大導致風機損壞的現(xiàn)象,高壓鼓風機利用再生原理設計,單段風葉徑小,風量增速,產生高風壓特性,免保養(yǎng)!無油氣!壽命長。采用進口軸承,葉輪,全銅線圈打造優(yōu)質產品!
在線留言油庫油氣回收設備用防爆鼓風機
設備EX防爆環(huán)形鼓風機材質選擇特點(壓鑄鋁):
壓鑄鋁合金按性能分為中低強度和高強度AL—SI—CU、AL—SI—MG、AL—SI—CU—MG、AL—ZN等。鋁合金壓鑄一般用ADC12鋁合金(日本牌號),A356鋁合金,A356一般坐汽車件,ADC12鋁合金一般做通用件,具體還是需要看產品對材料的要求,包括氣密性和硬度。
產品質量好:鑄件尺寸精度高,一般相當于6~7級,甚至可達4級;表面光潔度好,一般相當于5~8級;強度和硬度較高,強度一般比砂型鑄造提高25~30%,但延伸率降低約70%;尺寸穩(wěn)定,互換性好;可壓鑄鋁薄壁復雜的鑄件。例如,當前鋅合金壓鑄鋁件小壁厚可達0.3mm;鋁合金鑄件可達0.5mm;小鑄出孔徑為0.7mm;小螺距為0.75mm。
梁瑾高壓風機的基本性能參數包括流量Q、全壓p、靜壓pst、功率N、全壓效率η、靜壓效率ηst、轉速、比轉速等.
它們從不同角度表示風機的工作性能,現(xiàn)分別介紹如下:
1.1流量 指單位時間內通過風機進口的氣體的體積。用Q表示,單位是L/s,m3/s。若無特殊說明,Q是指在標準進口狀態(tài)下(1標準大氣壓,溫度20℃,相對濕度為50%,ρ為1.2kg/m3)氣體體積。
1.2全壓 指單位體積氣體從風機進口截面經葉輪到風機出口截面所獲得的機械能的增加值。用p表示,單位為pa。
1.3靜壓 指風機的全壓減去風機的出口截面處的動壓pd2(通常將風機出口截面處的動壓作為風機的動壓)之差值。用pst表示。即: pst=p-pd2
1.4功率 軸功率N:風機的原動力(通常是電機或柴油機等)傳遞給風機軸上的功率。 有效功率Ne:氣體流經風機時獲得的功率。 風機的功率通常是指輸入功率,即軸功率。用N表示。單位為W,kW。
1.5效率 反映風機性能的好壞及能量利用的程度。效率越高,說明機器的品質越優(yōu)良,所以效率是風機的重要技術經濟指標之一。
防爆環(huán)形鼓風機原理:
當葉輪轉動時,由于離心力的作用,風向標促使氣體向前向外運動,從而形成一系列螺旋狀的運動。葉輪刀片之間的空氣呈螺旋狀加速旋轉并將泵體之外的氣體擠入(由吸氣口1吸入)側槽,當它進入側通道2以后,氣體被壓縮,然后又回復到葉輪刀片間再次加速旋轉。當空氣沿著一條螺旋形軌道穿過葉輪和側槽時,每個葉輪片增加了壓縮和加速的程度,隨著旋轉的進行,氣體的動能增加,使得沿側通道通過的氣體壓力進一步增加。當空氣到達側槽與排放法蘭的連接點(側通道在出口處變窄),氣體即被擠出葉片并通過出口消聲器排出泵體。
防爆環(huán)形鼓風機結構
結構堅固、環(huán)形鼓風機本體用ADC12鋁合金鑄造、有別于一般鐵殼或AC10鋁合金制之鼓風ADC12材質與轎車車輪鼓同一材質,更堅固耐用、可靠性高、 除了葉輪外、高壓風機沒有其他動件、且葉輪直接連接馬達、無齒輪或傳動皮帶、因此可靠性高、幾乎免維修、無油氣、無污染、葉輪旋轉時,不與任何不見接觸,免潤滑,因此可保證無油氣、低震動、鼓風機零件采用精密深加工、檢測設備、運轉部分之零件均經過極精密之平衡設計、測試、校正所以震動率很低級。采用進口軸承,葉輪,全銅線圈打造高質量產品!
吸附法油氣回收
儲運過程產生的含烴氣體通過活性炭吸附劑床層,其中的烴類被吸附劑吸附,吸附過程在常溫常壓下進行。吸附劑達到一定的飽和度后,進行抽真空減壓再生,再生過程中脫附出的油氣再用油品進行吸收,吸收后的貧氣再返回到吸附過程進行吸附。
主要工藝單元包括:油氣收集、吸附過程、再生過程、壓縮過程、吸收過程、換熱和密封。吸附法的大優(yōu)點就是可以通過改變吸附和再生運行的工作條件來控制出口氣體中油氣的濃度。缺點是,工藝復雜、吸附床層易產生高溫熱點(實驗室試驗已證明)。三苯易使活性炭失活;失活活性炭的處理問題。國內尚未有國產的工業(yè)裝置運行,有四套進口的裝置在石油庫運行,裝置購置費用高。
工藝流程:在裝車地點產生的油氣通過密閉鶴管進入油氣回收裝置。在油氣進入裝置之前,先通過一個排水罐以保證不含汽油的油氣微粒進入碳床。另外,油氣母管上還設有PVV(真空/壓力閥)緊急出口,可以確保裝置在停工狀態(tài)下將油氣母管內的油氣釋放。PVV緊急出口或其他緊急出口應該配有相應的阻燃阻火栓。
回收裝置由2個碳床組成,一個通過閥門連接在油氣進入管上,處于“吸附”狀態(tài),另一個則通過真空泵進行“再生”。兩個炭床同時工作,保證對*進入裝置的油氣及時進行回收處理。即:一個炭床用于吸附油氣中的烴,另一個炭床則將吸附的烴通過真空泵排出;當*個炭床的吸附烴達到飽和后,立即轉入“再生”操作(即脫附階段),而在此之前已排空的第二個碳床進入下一個階段的“吸附”狀態(tài)。
活性炭的再生需要通過兩個階段完成。首先,活性炭容器內被抽真空,所吸附的烴從炭床中分離出來,使大部分烴被脫附。然后,為了保證炭床中的烴被盡可能*地清除干凈,有必要引入少量空氣對碳床上可能殘留的烴進行吹掃。本裝置采用的真空泵是液環(huán)泵。需要一個液氣分離罐和一個換熱器。真空泵的封液是乙二醇和水的混合物。換熱器的標準選配媒介是汽油或其他種類的冷凝液。
在分離罐中,高濃度的烴氣進入吸收噴淋塔。從汽油儲罐中抽出來汽油自塔的頂部噴淋下來,與自下而上純烴氣混合,由此實現(xiàn)烴在汽油中的吸收。
全套裝置具有自動節(jié)能功能:如果裝車停止,所有裝置都處于待命操作狀態(tài)。處于待命狀態(tài)的裝置可以隨時啟動。真空泵每隔一段時間就自動啟動一次,以保持碳床的干凈和活性炭的活性。當下次裝車開始時,全套裝置自動啟動。
活性炭吸附法油氣回收裝置,是歐美現(xiàn)在流行的技術,其大的特點是,通過改變裝置運行條件,可控制出口氣體中烴的濃度,達到不同的排放標準要求。
每回收1升汽油消耗0.15~0.2度電。平均每年的運行成本為16萬元人民幣。根據實驗室的吸附劑篩選研究,活性炭是專門制造的,非一般的活性炭。市面上銷售的活性炭均達不到其吸附和脫附的性能。吸附過程是一個物理的放熱過程,在對高濃度的油氣進行吸附,炭層的溫升很快,溫度也很高,實驗室進行的吸附劑篩選試驗結果也證明了這一點。L×D為250×40mm的吸附柱在室溫下進行吸附,僅幾分鐘,炭層的溫度達到80~90℃。所以,日本政府從安全的角度考慮,嚴禁使用可燃性的活性炭做為油氣回收的吸附劑。此外,采用抽真空解吸的方法再生活性炭,三苯的脫附是有問題的,三苯在活性炭上的吸附,將終導致活性炭的失活。采用吸附的方法回收油氣,不能直觀地看到回收物。而對失活的活性炭怎樣處理也是將面臨的問題。由于炭層高度對油氣通過炭層有壓力損失,對鶴管的密閉提出更高的要求。
《東京都條例》規(guī)定油氣濃度≥1vol%,禁止使用可燃性活性炭吸附劑。日本的吸附法油氣回收裝置,初期使用單一硅膠吸附劑,然后又改為床層內充填不同硅膠吸附劑,目前改為吸附塔內分層充填硅膠和活性炭吸附劑。
吸收法油氣回收
吸收法回收油氣大體上有兩種吸收劑,油品和吸收劑?;驹硎牵河蜌膺M入吸收塔,被從塔頂噴淋的吸收劑吸收。在真空解吸罐,通過真空抽吸,將溶于吸收劑中的油氣解吸。再生的吸收劑用泵送至吸收塔循環(huán)使用。解吸的油氣被真空泵送至再吸收塔,被塔頂噴淋下來的貧油(汽油)吸收,未被吸收的少量油氣進吸收塔再次吸收。
工藝流程:裝車油氣在微正壓作用下,自罐車密閉蓋出氣口經外網管線進入吸收塔,在吸收塔填料層中與塔頂噴淋下來的吸收劑逆向接觸,吸收劑將烴類油氣選擇吸收,實現(xiàn)裝車油氣中烴類與空氣的分離,未被吸收劑吸收的氣體經阻火器排放。吸收劑在壓差的作用下進入真空解吸罐,真空條件下解吸出被吸收的油氣,吸收劑在真空解吸罐中實現(xiàn)了再生。解吸出的油氣有真空機組輸送到在吸收塔,用成品油充分吸收后輸送至成品油儲罐,實現(xiàn)油氣回收。再吸收塔中未被吸收的油氣從再生塔頂返回到吸收塔,再次被吸收劑吸收。
從裝置的標定結論看出了問題,裝置回收率標定值為95.63%,而監(jiān)測的尾氣排放濃度為5.88g/m3,反算油氣進口濃度為134.55g/m3,會上曾就此問題向對方提出,解釋為冬季測定結果。該數值明顯偏低,經分析認為,有幾種可能:1.測定方法的問題;2.油氣密閉收集有問題;3.隨意的編造。
由于吸收過程是對全部油氣的吸收,因此*個吸收塔的規(guī)模很大,將需要很大的空間。吸附法僅是對再生過程產生的氣體進行吸收,氣體量小。
從工藝的過程來看,根據氣液平衡的原理,吸收劑將不斷消耗,需要不斷補充的。
根據九江同樣裝置的運行效果來看,90%回收率已是該工藝的極限,因此推斷,在油氣密閉和收集完好的情況下,裝置排出尾氣的濃度應大于80g/m3。體積濃度在1%以上。這也是為什么排氣出口氣體需要設置鼓風機對氣體稀釋排放。在幾種油氣回收技術中,吸收法的回收率是低的。
膜分離法油氣回收
氣體膜分離技術是一種基于溶解擴散機理的新型氣體分離技術,其分離的推動力是氣體各組分在膜兩側的分壓差,利用氣體各組分通過膜時的滲透速率的不同來進行氣體分離的。有機蒸汽分離膜為溶解選擇性控制,有機蒸汽在膜內的溶解度大,滲透速率快,從而實現(xiàn)與小分子的分離。
油氣混合氣體首先經液環(huán)壓縮機加壓至3.5 bar進入吸收塔,經輕質油吸收后的油氣再進入膜分離系統(tǒng)。富含VOC的滲透氣流膜截留側的氣體中VOC濃度可低到5~10g/m3。
油氣壓縮過程是一個安全隱患。
工藝流程:油氣混合氣體首先經液環(huán)壓縮為了提高膜分離系統(tǒng)的效率,在膜的滲透用液環(huán)真空泵提供約150mbar真空度。富含VOC的滲透氣流,返回液環(huán)壓縮機入口。膜截留側的氣體中VOC濃度可低降低到5~10g/m3,可以直接排放,或者進入第二級PSA,將排放氣中VOC含量降到5mg/m3。整個系統(tǒng)保證VOC回收率達到99%以上。
冷凝法油氣回收
油氣冷凝工藝技術原理是利用冷凍工程方法,將油氣熱量置換出來,使油氣各種組分溫度低于凝點從氣態(tài)變?yōu)橐簯B(tài),實現(xiàn)回收利用。
采用多級連續(xù)冷卻方法制冷至-73℃,典型的油氣回收率在90~95%。冷凝至-95℃,出口氣體的非甲烷總烴濃度≤35g/m3。
冷凝法油氣回收技術優(yōu)點是工藝簡單,安全性能好,回收物直接為油品。單壓縮機自復疊制冷技術開發(fā)的純冷凝法油氣回收裝置可將油氣溫度降至-100℃~-120℃。裝置正常工作狀態(tài)耗電量僅為0.2(Kw·h)/m3油氣,用電與活性炭吸附法持平。
冷凝式油氣回收處理設備關鍵技術成熟、造價相對低廉、占地面積小、維護容易、安全性好、運行費用小,僅耗電和冷卻水(也可用空冷方式),回收效益遠大于能耗支出。純冷凝式油氣回收設備處理能力5~500m3/h,。
工藝流程
油氣經三級冷卻,溫度降低至-100℃以下,從而冷凝出干凈的碳氫化合物液體。
油氣首先降溫至3~5℃,冷凝出碳氫化合物重組份和空氣中攜帶的水,降低在以后階段的結霜可能性。在第二級制冷,油氣進一步冷卻到-50~-65℃,然后通過第三級制冷冷卻到-100~-110℃。從三級制冷冷凝后的干凈冷空氣被加熱至10℃或者更高,熱源來自于制冷系統(tǒng)中回收熱。除霜:進入裝置空氣中攜帶的水蒸汽,在*階段就冷凝成液體,剩余的水蒸氣會在第二階段階段結霜。。國外冷凝式油氣回收裝置設計除霜液由循環(huán)運行的制冷系統(tǒng)的廢熱進行預熱。當系統(tǒng)24小時連續(xù)運行時,需要兩臺油氣冷凝器,其中一臺除霜,另一態(tài)繼續(xù)運行,系統(tǒng)自動進行除霜和切換。純冷凝式油氣回收裝置設計了快速除霜系統(tǒng),3~5min內完成除霜。
性能及指標
安全性――所有組件均Ex防爆組件;油氣通道無機械或者電力組件。
排放濃度--汽油和石腦油,尾氣出口濃度達到12g/m3(國家標準GB20952-2007規(guī)定:油氣排放達≤25g/m3)。
負荷―超過設計流量的150%~180%情況下運行,超負荷運轉時回收率略有下降,超過設計流量150%時汽油回收率為90%。
綜述:純冷凝法防爆油氣回收裝置利用了單壓縮機自復疊制冷新技術,油氣的回收率在99%以上,達到排放濃度在12g/m3以下,冷凝溫度應達到-100℃~-120℃。機組充分利用系統(tǒng)回熱,耗電為0.2(Kw·h)/m3油氣,和活性炭吸附法持平。裝置運行能耗很高,費用非常高。
油庫油氣回收設備用防爆鼓風機
上海市梁瑾機電設備有限公司 版權所有 ©2024滬ICP備16014934號-19 GoogleSitemap 技術支持:智慧城市網
上海市梁瑾機電設備有限公司為您提供齊全的油庫油氣回收設備用防爆鼓風機型號,油庫油氣回收設備用防爆鼓風機規(guī)格,歡迎來電咨詢。